Supermodularity and Affine Policies in Dynamic Robust Optimization
نویسندگان
چکیده
This paper considers a particular class of dynamic robust optimization problems, where a large number of decisions must be made in the first stage, which consequently fix the constraints and cost structure underlying a one-dimensional, linear dynamical system. We seek to bridge two classical paradigms for solving such problems, namely, (1) dynamic programming (DP), and (2) policies parameterized in model uncertainties (also known as decision rules), obtained by solving tractable convex optimization problems. We show that if the uncertainty sets are integer sublattices of the unit hypercube, the DP value functions are convex and supermodular in the uncertain parameters, and a certain technical condition is satisfied, then decision rules that are affine in the uncertain parameters are optimal. We also derive conditions under which such rules can be obtained by optimizing simple (i.e., linear) objective functions over the uncertainty sets. Our results suggest new modeling paradigms for dynamic robust optimization, and our proofs, which bring together ideas from three areas of optimization typically studied separately—robust optimization, combinatorial optimization (the theory of lattice programming and supermodularity), and global optimization (the theory of concave envelopes)—may be of independent interest. We exemplify our findings in a class of applications concerning the design of flexible production processes, where a retailer seeks to optimally compute a set of strategic decisions (before the start of a selling season), as well as in-season replenishment policies. We show that, when the costs incurred are jointly convex, replenishment policies that depend linearly on the realized demands are optimal. When the costs are also piecewise affine, all the optimal decisions can be found by solving a single linear program of small size (when all decisions are continuous) or a mixed-integer, linear program of the same size (when some strategic decisions are discrete).
منابع مشابه
Beyond Worst-case: A Probabilistic Analysis of Affine Policies in Dynamic Optimization
Affine policies (or control) are widely used as a solution approach in dynamic optimization where computing an optimal adjustable solution is usually intractable. While the worst case performance of affine policies can be significantly bad, the empirical performance is observed to be near-optimal for a large class of problem instances. For instance, in the two-stage dynamic robust optimization ...
متن کاملA Tractable Approach for designing Piecewise Affine Policies in Dynamic Robust Optimization
We consider the problem of designing piecewise affine policies for two-stage adjustable robust linear optimization problems under right hand side uncertainty. It is well known that a piecewise affine policy is optimal although the number of pieces can be exponentially large. A significant challenge in designing a practical piecewise affine policy is constructing good pieces of the uncertainty s...
متن کاملRobust optimization of a mathematical model to design a dynamic cell formation problem considering labor utilization
Cell formation (CF) problem is one of the most important decision problems in designing a cellular manufacturing system includes grouping machines into machine cells and parts into part families. Several factors should be considered in a cell formation problem. In this work, robust optimization of a mathematical model of a dynamic cell formation problem integrating CF, production planning and w...
متن کاملPassivity-Based Stability Analysis and Robust Practical Stabilization of Nonlinear Affine Systems with Non-vanishing Perturbations
This paper presents some analyses about the robust practical stability of a class of nonlinear affine systems in the presence of non-vanishing perturbations based on the passivity concept. The given analyses confirm the robust passivity property of the perturbed nonlinear systems in a certain region. Moreover, robust control laws are designed to guarantee the practical stability of the perturbe...
متن کاملRobust Optimization Approach for Design for a Dynamic Cell Formation Considering Labor Utilization: Bi-objective Mathematical Model
In this paper, robust optimization of a bi-objective mathematical model in a dynamic cell formation problem considering labor utilization with uncertain data is carried out. The robust approach is used to reduce the effects of fluctuations of the uncertain parameters with regards to all the possible future scenarios. In this research, cost parameters of the cell formation and demand fluctuation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Operations Research
دوره 61 شماره
صفحات -
تاریخ انتشار 2013